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   Apart from a general updating of the extensive literature on developmental neurobiology, neu-
rogenetics, imaging and developmental neuropathology between 2005 and 2013, more empha-
sis has been given to: (a) imaging of the embryonic brain (early prenatal diagnosis by 
ultrasound); (b) imaging of the fetal brain by MRI; (c) DTI studies on the development of 
major fi bre connections such as the pyramidal tract and the corpus callosum; and (d) the impact 
of newer genetic techniques such as whole exome/genome sequencing. Moreover, new clas-
sifi cations of brain disorders have been implemented such as a new classifi cation of midbrain- 
hindbrain developmental disorders and entire new families of disorders such as ciliopathies 
and dystroglycanopathies. Throughout the book, several new Clinical Cases have been added. 

 Several colleagues kindly contributed as new co-authors their expertise to this second edi-
tion, including Eleonora Aronica (Amsterdam), Mireille Bekker (Nijmegen), Kyoko Itoh 
(Kyoto), Karin Kamphuis-van Ulzen (Nijmegen), Irene Mathijssen (Rotterdam), Ronald 
Pennings and Hans van Bokhoven (Nijmegen), Patrick van der Voorn (Amsterdam) and 
Shigehito Yamada (Kyoto). They also contributed new Clinical Cases. For other new Clinical 
Cases, the help of Remke Dullemond (Rotterdam), Janet Eyre (Newcastle), Floris Groenendaal 
(Utrecht), Gregor Kasprian (Vienna), Hajime Miyata (Akita), Peter Nikkels (Utrecht), Tetsu 
Niwa (Yokohama), Andrea Poretti (Zurich), Ritsuko Pooh (Osaka), Goran Simić (Zagreb) and 
Marjolein Willemsen (Nijmegen) is gratefully acknowledged. New illustrations were also 
kindly provided by Marco Catani and Michel Thiebaut de Schotten (London), Cyrille Ferrier 
(Utrecht), Hao Huang (Dallas), Ole Kiehn (Stockholm), Grace Lai (New York), Anna Lavezzi 
(Milan) and Maria Thom (London). A long weekend with Luis Puelles in Murcia greatly 
helped the fi rst author to implement new fi ndings on the prosomeric model of the developing 
brain.  

    Hans     J.     ten     Donkelaar  ,   Nijmegen  
      Martin    Lammens  ,  Edegem   

        Akira    Hori  ,  Toyohashi     

  Preface to the  Second Edition 
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in contrast to  Netrin - 1  and  DCC  mutants (Rabe Bernhardt 
et al.  2012 ). Mutations in  DCC  in humans cause congenital 
mirror movements (Sect.  6.7.4 ).

    Motoneuron diseases  ( MNDs ) form an etiologically het-
erogeneous group of disorders characterized by muscle 
weakness and/or spastic paralysis, which results from the 
selective degeneration of lower motoneurons (spinal and bul-
bar motoneurons) and/or upper motoneurons (corticospinal 
neurons). The MNDs include the adult-onset amyotrophic 
lateral sclerosis (ALS), primary lateral sclerosis (PLS) and 
spinal bulbar muscular atrophy (SBMA), hereditary spastic 
paralysis and spinal muscular atrophy, both arising from 
early childhood onwards, and the fetal MND lethal congeni-
tal contracture syndrome (LCCS).  Spinal muscular atrophy  
( SMA ) is an autosomal recessive MND and is one of the 
most common genetic diseases that cause infant mortality 
(Lorson et al.  1998 ). SMA is characterized by the loss of spi-
nal anterior horn cells, hypotonia and progressive denerva-
tion of skeletal muscles (Dubowitz  1995 ; Simić et al.  2008 ) 
and is classifi ed into several types (Clinical Case  6.1 ). 

 The various manifestations of  hereditary spastic paraple-
gia  ( HSP ) comprise, after ALS, the second most important 
group of MNDs. The various spastic paraplegia (SPG) loci 
are associated with different forms of HSP (reviewed in Dion 
et al.  2009 ). SPG types relate to axonal transport and 
 membrane traffi cking, mitochondrial dysfunction, Schwann 
cell- related HSP and other cellular dysfunctions. Two HSP 
causitive genes for the L1 cell adhesion molecule (L1CAM) 
and the proteolipid protein 1 (PLP1) underlie two X-linked 
forms of HSP (Jouet et al.  1994 ; Saugier-Veber et al.  1994 ). 
The  L1CAM -associated HSP (SPG1) is the most common 
form of complicated HSP. The transmembrane protein 
L1CAM is expressed in neurons and Schwann cells and may 
have a role in the development of the CNS (Hortsch  2000 ). 
Mutations in  PLP1 , associated with SPG2, have been found 
in families with complicated HSP and also cause 
 Pelizaeus- Merzbacher disease (Inoue  2005 ; Chap.   2    ). 
 L1CAM  mutations are further discussed in Sect.  6.7.4 . 

 Degeneration of spinal motoneurons is also one of the 
characteristics of the  lethal congenital contracture syn-
drome  ( LCCS ) as shown in Clinical Case  6.2 .    

a

b

  Fig. 6.10    Organization of motor pools in the chick hindlimb ( a ) and 
primary motoneurons ( b ) in the zebrafi sh. ( a ) Motor pools ( mp ) of the 
sartorius ( S ), femorotibialis ( F ), adductor ( A ) and ischiofl exor ( I ) mus-
cles and their targets are shown in different colours. ( b ) Primary moto-
neuron types, characterized by different  LIM3  and  Isl1 / 2  codes, are 
shown for one neuromuscular segment.  CaP  caudal primary motoneu-
ron,  dlb  dorsal limb,  MiP  medial primary motoneuron,  RoP  rostral pri-
mary motoneuron,  VaP  variable type of primary motoneuron,  vlb  
ventral limb (After Pfaff and Kintner  1998 )       

  Fig. 6.11    Diagram of the rodent CPG. Flexor and extensor motoneu-
rons ( MNs ) are driven to rhythmicity by alternating excitation and inhi-
bition. Excitatory rhythm-generating neurons, therefore, need to drive 
premotor inhibitory neurons. Candidate premotor inhibitory neurons are 
Ia-interneurons connected in a reciprocal pattern belonging to the V1 
population and possibly the V2b population ( rIa - IN ,  V1 ,  V2b ?), and 
non- reciprocal group I-interneurons (not indicated). Some rhythmic 
premotor inhibition is also mediated via crossed connections and 
V1-related Renshaw cells ( RC ) activity. V2a-interneurons have connec-
tions to motoneurons. Other types of ipsilateral excitatory neurons 
besides the V2 neurons generate the rhythm and the drive to motoneu-
rons, directly and indirectly. These include Hb9 and ipsilateral V3 inter-
neurons. The rhythm- generating core and V2a-interneurons also drive 
the left-right coordinating circuits. Some hypothetical inhibitory recip-
rocal connections between fl exor and extensor rhythm-generating mod-
ules may serve a distinct role in securing fl exor-extensor alternation ( V1 , 
 V2b ?) (After Kiehn  2011 ; kindly provided by Ole Kiehn, Stockholm)       

  

6.4  The Specifi cation of Cell Fates in the Spinal Cord
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 Clinical Case 6.1. Spinal Muscular Atrophy 

  Spinal muscular atrophy  ( SMA ) is an autosomal MND 
characterized by the loss of spinal anterior horn cells, 
hypotonia and progressive denervation of skeletal mus-
cles. According to age at onset and severity, SMA is clas-
sifi ed in several types (Dubowitz  1995 ):
    1.    SMA-I (Werdnig-Hoffmann disease, acute SMA) with 

onset usually before 9 months; the affected infants fail 
to achieve early motor milestones, are never able to sit 
and usually die within the fi rst 2 years of life after 
respiratory failure;   

   2.    SMA-II, the intermediate or chronic infantile form, 
with onset around 3–15 months; children with SMA-II 
may sit but do not learn to ambulate;   

   3.    SMA-III (Kugelberg-Welander disease) with onset 
between 1 and 15 years; these children are able to 
achieve walking and generally live into adulthood;   

   4.    SMA-IV, a rare adult form with onset after 30 years of 
age.    
  SMA types I-III are all caused by loss-of-function 

 mutations or deletions of  SMN1  on chromosome 5q13 
(Lefebvre et al. 1995). The SMN protein is most abun-
dant in the cytoplasm of α-motoneurons (Battaglia et al. 
1997). Together with the degeneration and subsequent 
loss of anterior horn cells (α- and γ-motoneurons as well 
as interneurons), ‘empty cell beds’, glial cell bundles of 
ventral spinal roots, and heterotopic motoneurons 
(HMNs) are the most obvious neuropathological fi ndings 
(Simić et al.  2008 ). 

 Simić et al. ( 2008 ) examined the occurrence and 
amount of HMNs in spinal cord tissue from 8 children 
with SMA (6 with SMA-I and 2 with SMA-II). All were 
carrying a homozygous deletion of exon 7 in the  SMN1  
gene. All SMA subjects showed a signifi cant number of 
HMNs at all levels of the spinal cord. Heterotopic neu-
rons were hyperchromatic, located mostly in the ventral 
white matter and had no axon or dendrites (Fig.  6.12 ). 
More than half of the HMNs were very undifferentiated, 
as shown by their lack of immunoreactivity for NeuN 
and MAP2 proteins. With in situ end labelling (ISEL) 
HMNs in the ventral outfl ow were found to die by 
necrosis. Simić et al. ( 2008 ) suggested that abnormal 
 migration, differentiation and lack of axonal outgrowth 
may induce motoneuron apoptosis, predominantly dur-
ing early stages, whereas a slower necrosis-like cell 
death of displaced motoneurons which ‘escaped’ apop-
tosis characterizes later stages of SMA.

   This case was kindly provided by Goran Simić 
(Department of Neuroscience, Croatian Institute for 
Brain Research, Medical School of Zagreb, Croatia). 
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  Fig. 6.12    Accumulation of heterotopic (migratory) motoneurons 
( mmn ) at the anterior rim of the spinal cord in: ( a ) a female 5-month-
old SMA-I subject, ( b ) a male 8-month-old SMA-I subject, and ( c ) 
in some sections, particularly those of younger SMA-I subjects, 
more than ten heterotopic motoneurons ‘aligned’ at the front wall of 
the spinal cord ( lower left corner arrow ) or outside the spinal cord 
( lower right corner arrow ).  AH  anterior horn,  VR  ventral root.  Scale 
bars  = 20 μm (From Simić et al.  2008 ; kindly provided by Goran 
Simić, Zagreb)       
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 Clinical Case 6.4.  L1CAM  Mutation 

 L1CAM is a neural cell adhesion molecule expressed in 
the developing nervous system. A number of X-linked 
human neurological disorders with links to the  L1CAM  
gene have been reported, including X-linked hydrocepha-
lus, MASA syndrome, X-linked spastic paraplegia and 
CRASH syndrome (see Case Report). The phenotype 
common to these disorders is congenital hydrocephalus, 
but the underlying mechanism remains to be elucidated. 

  Case report . A male fetus was stillborn at the 21st 
week of gestation. He was the fi rst boy with no family 
history. Fetal ultrasonography and MRI at the 18th week 
of gestation led to the prenatal diagnosis of fetal hydro-
cephalus with adducted thumbs, characteristic for the 
phenotype of an  L1CAM  mutation (Fig.  6.30a–f ). The 

cerebral hemispheres normal convexity (Fig.  6.30g ). In 
sections, the cerebrum showed hydrocephalus with a thin 
wall of the dorsal telencephalon, absence of the corpus 
callosum and fused thalami (Fig.  6.30h ). Histologically, 
the cerebral cortices of the frontal, parietal, temporal and 
occipital lobes were normally formed. The cerebellum 
also showed normal cortical lamination. The genetic anal-
ysis revealed an  L1CAM  mutation at 818–820 DEL.

   Unfortunately, the spinal cord could not be examined, 
but in the brain stem at the facial nerve level, the pyrami-
dal tract was not evident (Fig.  6.30i ) as it should have 
been as found in an age-matched control (Fig.  6.30j ). 

 This case was kindly provided by Kyoko Itoh 
(Department of Pathology and Applied Neurobiology, 
Graduate School of Medical Science, Kyoto Prefectural 
University of Medicine, Japan). 

a
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  Fig. 6.30    ( a – d ) Fetal MRIs at the 18th week of gestation showing 
the extensive hydrocephalus of a L1CAM case; ( e ,  f ) 3D-ultrasound 
( e ) showing the adducted thumb of the fetus, confi rmed at autopsy 
( f ); the cerebral hemispheres showed normal convexity ( g ); in sec-
tions ( h ), the thin wall of the telencephalon is evident as well as 

agenesis of the corpus callosum and fused thalami; ( i ,  j ) transverse, 
HE-stained sections through the brain stem at the level of the facial 
nerve, showing near-absence of the pyramidal tract in the L1CAM 
case ( i ) versus its presence in an age-matched control ( j ) (The pho-
tomicrographs were kindly provided by Kyoko Itoh, Kyoto)       

6.8         Developmental Anomalies 
of the Spinal Cord 

 Developmental anomalies of the spinal cord include rare 
malformations such as anomalies of histogenesis, duplica-
tions, neurenteric cysts and abnormal course or even 
absence of fi bre tracts and more common malformations 
such as syringomyelia. The most common malformations 
of the spinal cord, the neural tube defects, are discussed in 
Chap.   4    . 

6.8.1     Anomalies of Histogenesis 

 Small grey matter ectopia are found regularly in the spinal 
cord. Hori ( 1981 ,  1998 ) noted a frequency of 2 % in autop-
sies. Neuronal heterotopia in the white matter were also 
found incidentally in 2 % of autopsies (Hori  1981 ,  1998 ). 
Intramedullary heterotopic nerve cells may be more frequent 
in amyotrophic lateral sclerosis (Kozlowski et al.  1989 ; 
Martin et al.  1993 ; Sasaki and Iwata  1998 ). Quite often there 
are heterotopic nerve cells in the posterior as well as in the 
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anterior spinal nerve roots (Hori  1988a ). Heterotopic neu-
rons in the posterior roots originate from the posterior spinal 
ganglion and those in the anterior roots may originate from 
the anterior horn as well as from the posterior spinal gan-
glion. Abnormal motoneuron migration, differentiation and 
lack of axonal outgrowth may play an important role in spi-
nal muscular atrophy (Simić et al.  2008 ; Clinical Case  6.1 ).  

6.8.2       Duplications of the Spinal Cord 

 Ectopic expression of  Gcm1  induces congenital spinal cord 
abnormalities (Nait-Oumesmar et al.  2002 ). Brief ectopic 
expression of  Gcm1  in mouse embryonic tail buds leads to 
spina bifi da and/or multiple neural tubes.  Duplications  of the 
 spinal cord  are rare malformations of the human nervous sys-
tem. Hori et al. ( 1982 ) described four types of total or partial 
duplication of the human spinal cord, using the following sub-
division (Fig.  6.31 ): (1) dimyelia, a complete duplication of 
the spinal cord; (2) diplomyelia, an isolated accessory spinal 
cord without roots at the ventral lumbosacral level; (3) com-
plex diastematomyelia ( diastema  is Greek for split); and (4) 

typical diastematomyelia.  Dimyelia  was observed in a female 
stillborn dicephalus dibrachius. Histologically, the two spinal 
cords showed symmetric medial hemihypoplasia that included 
the spinal roots (Fig.  6.31a ). The term dimyelia should be 
restricted to cases with a total duplication of the spinal cord. 
 Diplomyelia  was found in a newborn girl with a cardiovas-
cular malformation (Clinical Case  6.5 ). The term diplomy-
elia should be limited to cases of an isolated accessory spinal 
cord, ventral or dorsal to the normal cord (Környey  1925 ; 
Schneiderling  1938 ; Dominok  1962 ; Hori et al.  1982 ; Pang 
et al.  1992 ; Hori  1998 ).  Diastematomyelia  means a lateral 
bifurcation of the spinal cord, independent of whether or not 
the branches show completely differentiated cord structures 
with four columns and segmental roots. Diastematomyelia 
is usually associated with a bony spur or a cartilaginous or 
fi brous septum in the spinal canal. Typical, complex and 
‘forme fruste’ forms can be distinguished (Fig.  6.31 ). A com-
plex form was found in a 9-day-old boy with a Chiari II mal-
formation and a thoracic meningomyelocele. The left branch 
of the cord showed further complex anomalies. A typical form 
was observed in a stillborn girl, born to an adolescent mother 
at 34 weeks of gestation (Fig.  6.32 ).
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  Fig. 6.31    Duplications of the spinal cord. Summary of the morpho-
logic features of cases of dimyelia, diastematomyelia and diplomyelia: 
( a – c ) (Hori et al.  1982 ); ( d ) (Rokos  1975 ); ( e ) (Benstead  1953 ); ( f ) 
(James and Lassman  1964 ); ( g ,  l ) (Emery and Lendon  1974 ; reverse 
form of ( l ) with four posterior and two anterior columns: Vinters 
and Gilbert  1981 ); ( h ) (Kersten  1954 ; James and Lassman  1972 ); 

( i ) (Griepentrog  1953 ); ( j ) (Haas  1952 ); ( k ) (von Sántha  1930 ); ( m ) 
(Hori et al.  1982 ; Clinical Case  6.1 ); ( n ) (Dominok  1962 ); ( o ) (Környey 
 1925 ); ( p ) (Schneiderling  1938 ). Apart from those indicated by  crosses  
(left lateral views), anteroposterior views of the spinal cord are shown. 
 Broken lines  indicate the dura (After Hori et al.  1982 )       
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